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NOMENCLATURE 1. INTRODUCTION 

acceleration due to gravity ; 
coefficient of volume expansion ; 
thermal diffusivity ; 
coefficient of kinematic viscosity ; 
constant mean wall temperature, constant free 
stream temperature ; 
mean velocity of wall oscillations ; 
a very small number; 
dimensionless boundary-layer thickness ; 
Prandtl number; 
coordinates in x, y directions ; 
non-dimensional perpendicular distance from the 
wall ; 

V, V, T, t, w, fluid velocities in x, y directions, fluid 
temperature, time, frequency of oscillations in 
their non-dimensional forms. Barred quantities 
denote their dimensional forms. 

STUDY of combined free and forced convection near a wall 
whose temperature and velocity oscillate about a mean is 
important from a practical point of view. Uniform velocity or 
constant wall temperatures are only ideal cases and in reality 
are subject to periodic variations occurring at long intervals 
which is a case of low frequency oscillations or at short 
intervals corresponding to high frequency oscillations. The 
variations may not be strictly periodic but may very nearly be 
so. The vertical motion of a rocket through still air having 
such approximate small periodic changes in its velocity and 
wall temperature can be likened to a model of flat plate in 
motion with small variations (from their constant values) in 
its velocity and temperature. Study of high frequency oscil- 
lations in heat transfer near a wall which might be in 
periodically varying relative motion is of some consequence 
in the working of liquid rocket and turbojet engines. 

Nanda and Shanna [ 1] studied the free convection in the 
boundary layer near a vertical wall with its temperature 
oscillating about a non-zero mean. We have extended their 
study by imposing a motion on the flat wall varying 
periodically about a steady mean. Though the manner of 
analysis follows the lines of Nanda and Sharma [ 11, some new 
results evidently reflecting the effects of the imposed oscil- 
latory motion have been obtained and are expected to be of 
practical interest in problems of the nature quoted above. It is 
of special interest to note that in case of high frequency 
oscillations there always exists a fluid layer parallel to the wall 
at a distance r) = 0.37 which travels with a velocity oscillating 

Subscripts 

s, steady part ; 
L2, oscillating component, out of phase component; 
x, y,t, partial differentiation with respect to these 

variables. 
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in phase with the wall velocity for all values of the Grashof 
number. 

2. FORMULATION OF THE PROBLEM 

AND BASIC EQUATION 

We consider an infinite vertical flat plate whose tempera- 
ture and velocity oscillate in time about non-zero means. 
Assuming free stream temperature 7, as constant, the 
vertical direction of the plate as positive x-axis, and y-axis 
perpendicular to the plate, the boundary-layer equations of 
an incompressible viscous fluid are 

or+ DO, + PO, = g/?(T- T,,, + VU, (1) 

(I,+ v,=o (2) 

T’i+ OTj + P-T? = czjp (3) 

The boundary conditions are 

j= 0; D=U,(l+ECOSOr) 

P=O 

T-- ‘i; = (Q - ‘i=)(l + &COSOf) 

! 

(4) 

y-+ r_; u,v-+o; T-t 7;. 

and the boundary conditions are 

e = (1 + E coswt) 

y+‘X; v,v,s-+o J 

where o = vcS/U& 
The resulting equations are split into steady and non- 

steady parts on assumingfk = jks + sfkl ei”” (k = 1, 2, 3) 
whenf,,f, andf, denote U, V and erespectively. The part ‘fks’ 
is the steady component and ‘fkl' is the oscillatory component 
involving E. The equations are separately solved for low and 
high frequency ranges. In low frequency range, the solutions 
for the basic steady parts are found by the Karman- 
Pohlhausen method as adopted by Squire [2] and in the high 
frequency range by direct integration method. In the former 
case the coefficients of the polynomials are obtained from a 
pair ofhnear first order differential equations through a series 
expansion method. Further details are given in the Appendix 
below. 

3. METHOD OF SOLUTION OF THE EQUATIONS 

Equations (1) (2) and (3) are made non-dimensional by 
substituting 

_ 

u=‘, 
0 

(5) 
XU, 

x=-, 
V 

4. DISCUSSION OF RESULTS 

The following observations are made from the graphs 
drawn on the basis of computed results. 

(1) Fluid velocity at a = 0.37 fluctuates in phase with the 
wall velocity. Also for small values of Pr and x, the velocity of 
the fluid layers nearer the wall than it = 0.37 oscillate with a 
phase lead over the wall velocity oscillation while the layers 
farther beyond n = 0.37 have a phase lag behind it. Fluid 
temperature oscillation has a constant phase lead of n/2 over 
the wall temperature (Fig. 1). 

(2) In shear wave the fluid temperature oscillation has 
always a phase lead over the wall temperature increasing 

FIG. 1. Velocity distribution in shear wave 



1600 Shorter Communications 

linearly with distance from the wall, the phase difference of the 
fluid velocity and wall velocity oscillation near the origin 
fluctuates about a zero mean with decreasing amplitude on 
the positive side and increasing amplitude on the negative 
side and with distance from the wall, attaining zero value at 
the edge of the boundary-layer (Fig. 2). 

(3) The amplitudes of oscillation of the velocity and 
temperature in shear wave actually die down at a distance 
which is a small fraction of 6. This distance is a measure of the 
boundary layer which is larger in the thermal case than in the 
case of velocity oscillations and in either case is entirely 
contained within the steady boundary-layer as observed 
earlier (Fig. 3). 
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APPENDIX -l (12) 

Equations (l), (2) and (3) on being made non-dimensional e2 = A,(T - 3$ + 2@) + +Pro#(q* - 2$ + $)J 
with the help of (5) become where r~ = y/6,6 is the dimensionless boundary layer thick- 

u, + uu, + vu, = Ge + u,, (7) ness, A, and 8, are functions of x and further 

u,+v,=o 

e,+ ue,+ ve, =iey, 

(8) u, = (1 - r1YU - Mxtl) 
es = (1 - #. (13) I- 

(9) Solving (9) with the help of (13) we obtain 
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FIG. 2. Phase in shear wave. 
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FIG. 3. Amplitude in shear wave. 

M, = {7(4 - 2Pr)/(8 + 7 Pr)] 

- {f(4.36)‘(7G/8 + 7Pr)“‘}xr” (14) 

and 

6 = (4.36){(8 + 7 Pr)/7 Pr2 G}“’ x1j4. (15) 

From (11) and (15) we obtain 

u, = -+(4.36)2(7~/8 + Pr)‘“t7(1 - r))2 x1/2 
(16) 

8, = 0. I 

Integrating the above two sets of equations (a) and (b) with 
help of (12) and (13), subject to the corresponding boundary 
conditions, we get a pair of coupled linear first order 
differential equations which are solved by the series expan- 
sion method. 

High frequency ranges 
The oscillatory boundary-layer thickness (v/o)“’ for large 

frequency becomes small and is contained within the steady 
boundary layer thickness due to mean flow. These ex- 
pressions can be directly integrated. The longitudinal com- 
ponent of the velocity and temperature of the plate, velocity 
and temperature in shear wave flow and overall heat transfer 
have been calculated, but the details are omitted here due to 
want of space. 

Local heat transfer 
The quantity of heat transferred from surface to the fluid is 

given by 

q = -k(ii;S)?= O = - kU, T,( A, sin ot)/v& 

The temperature gradient in shear wave flow is given by 

Re[exp(iwt) . (O,), at y = 0] = -(wPr)cos(ot + x/4). 


